

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	CE
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: ICH602S	COURSE NAME: INORGANIC CHEMISTRY
SESSION: JANUARY 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEME	NTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	DR EUODIA HESS
MODERATOR:	PROF HABAUKA KWAAMBWA

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly
4.	All written work must be done in blue or black ink and sketches can
	be done in pencil
5.	No books, notes and other additional aids are allowed

THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page, list of useful constants and Periodic Table)

QUESTION 1: Multiple Choice Questions

[40]

- There are 20 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1. The number of electrons in the **highest** energy level of 20Ca is _____.
 - A. 8
 - B. 6
 - C. 2
 - D. 4
- 2. Which electron configuration represents a neutral atom of nitrogen in an excited state?
 - A. 1s²2s¹2p⁵
 - B. 1s²2s²2p³
 - C. 1s²2s¹2p⁴
 - D. 1s²2s²2p⁴
- 3. The atom whose outermost shell structure (principal energy level) most closely resembles that of neon (atomic number 10) has the atomic number _____.
 - A. 16
 - B. 11
 - C. 31
 - D. 18
- 4. A lithium atom has an atomic number of 3 and a mass of 7. The number of electrons which it has in the 1st shell (principal energy level) is ______.
 - A. 7
 - B. 3
 - C. 1
 - D. 2

5. Which of the following is a network solid?
A. SO_2 (solid) B. I_2 C. Diamond D. H_2O (ice)
6. What is the hybridisation of the carbon atoms in ethyne, C_2H_2 ?
A. sp B. sp^2 C. sp^3 D. sp^3d
7. What is the electronic geometry for 5 regions of high electron density on a central atom?
A. octahedral
B. square planar
C. tetrahedral
D. trigonal bipyramidal
8. What angle(s) are associated with a central atom that has tetrahedral electronic geometry?
A. 109.5
B. 120
C. 120 and 180
D. 90 and 120
9. Which one of the following molecules is polar?
A. <i>N</i> ₂
B. P_4
C. Cl ₂
D. <i>H</i> ₂ <i>O</i>

10. What kind of hybrid orbitals is utilised by the carbon atom in CF_4 molecules?
A. sp
B. sp^2
$C.\ sp^3$
D. sp^3d
11. The electronic geometry of the central atom in PCl_3 is
A. pyramidal
B. trigonal planar
C. tetrahedral
D. octahedral
12. The molecular geometry of PCl_3 is
A. pyramidal
B. trigonal planar
C. tetrahedral
D. octahedral
13. Choose the false statement from the following:
A. A sigma bond is a bond resulting from head-on overlap of atomic orbitals.
B. A pi bond is a bond resulting from side-on overlap of atomic orbitals.
C. A double bond consists of one sigma bond and one pi bond
D. A triple bond may consist of one sigma bond and two pi bonds or of two sigma bonds and one pi bond.
E. A carbon atom involved in a double bond may not be sp3 hybridized.
14. How many lone pairs of electrons does the Lewis dot structure of H_2S have around its central
atom and what is the shape of the molecule?
A. 0, linear
B. 0, bent
C. 1, trigonal planar
D. 2, bent

15.	Number of dative bonds to central metal ion is its
	A. oxidation number
	B. compound number
	C. dative number
	D. coordination number
16.	Ions which are produced from ligands are
	A. Cation
	B. Anion
	C. Complex ion
	D. All of them
17.	In a face centred cubic lattice the number of nearest neighbours for a given lattice point is
	A. 6
	B. 4
	C. 8
	D. 12
18.	Use VSEPR theory to predict the molecular geometry of SO_3^{2-} .
	A. bent
	B. tetrahedral
	C. square planar
	D. triangular pyramidal
19.	In a comparison with s-block elements, melting points of transition elements are
	A. Higher
	B. Lower
	C. Same
	D. Constant

D. f-orbital	
SECTION B:	<u>50]</u>
QUESTION 1: [2	20]
1.1 Use the VSEPR model to predict the geometry of the following ,molecules & ions a) AsH_3 b) OF_2 c) $AlCl_4$ d) l_3 e) C_2H_4	10)
 1.2 Predict whether each of the following molecules has dipole moment and give an explanation for each. a) BrCl b) BF₃ (trigonal planar) c) CH₂Cl₂ (tetrahedral) 	(6)
1.3 Describe the hybridization state of phosphorus in PBr ₅ .	(4)
QUESTION 2:	10]
2.1 Which of the following can form hydrogen bonds in water and why? CH_3OCH_3 ; CH_4 ; F^- ; $HCOOH$; Na^+	(2)
2.2 When silver crystallizes, it forms face-centered cubic cells. The unit cell edge length is 409 pm. Calculate the density of silver.	(8)
QUESTION 3:	20]
 3.1 Write the systematic names of the following coordination compounds: a) Ni(CO)₄ b) NaAuF₄ c) K₃[Fe(CN)₆] d) [Cr(en)₃]Cl₃ 	(8)

20. Due to ligands' action of splitting colour of transition metal compound, this change occurs at

A. s-orbitalB. p-orbitalC. d -orbital

- 3.2 What are the geometries of the following two complexes:
 - a) [AICI4]-
 - b) $[Ag(NH_3)_2]^+$
- 3.3 Write the formula of each of the following coordination compounds:

(10

(2)

- a) Tetraammineplatinum(II) chloride
- b) Sodium hexacyanoferrate(III)
- c) Tris(ethylenediamine)platinum(IV) sulfate
- d) Diamminesilver(I) nitrate
- e) Potassium diaquadioxalatocobaltate(III)

QUESTION 4: [10]

Calculate the amount of energy (in kJ) needed to heat 346 g of liquid water from 0°C to 182 °C. Assume that the specific heat of water is 4.184 J/g· °C over the entire liquid range and that the specific heat of steam is 1.99 J/g· °C ($\Delta H_{vap} = 40.79 \text{ kJ/mol}$ for water).

END OF EXAMINATION

USEFUL CONSTANTS:

Gas constant, $R = 8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.083145 \text{ dm}^3 \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L atm mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L}$

 $1 \text{ Pa} \cdot \text{m}^3 = 1 \text{ kPa.L} = 1 \text{ N} \cdot \text{m} = 1 \text{ J}$

1 atm = 101 325 Pa = 760 mmHg = 760 torr

Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Speed of light, $c = 2.998 \times 10^8 \text{ ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

	_			_						_		_	_				_	
18 2 He 4.00260	10	Š	20.179	18	Ar	39.948	36	Kr	83.8	54	Xe	131.29	98	Rn	(222)	118	Uuo	
17	6	1	18.9984	17	ひ	35.453	35	Br	79.904	53	_	126.9	85	At	(210)			
16	∞	0	15.9994	16	Ø	32.06	34	Se	00.000	52	Te	127.6	84	Po	(503)	116	Unh	
15	7	Z	14.0067	15	Ь	30.9738	33	As	74.9216	51	Sb	121.75	83	Bi	208.908			
14	9	U	12.011	14	Si	28.0855	32	g	72.59	50	Sn	118.69	82	Pb	207.2	114	Und	
13	5	B	10.81	13	A	26.9815	31	Ga	69.72	49	In	114.82	81	E	204.383			
,						12	30	Zn	65.38	48	Ca	112.41	08	Hg	_	112	Uub	(569)
						11	29	C	63.546	47	Ag	107.868	79	Ψ		1111	Unn	(272)
						10	28	Z	58.69	46	Pd	21	78	Pt	195.08	110	Uun	(595)
						6	27	ට	58.9332	45	Rh	102.906	77	ı	192.22	109	Ä	(268)
						∞	26	Fe	55.847	44	Ru	7	16	ő	190.2	108	Hs	(265)
						7	25	Mn	54.9380	43	Tc	(86)	75	Re	186207	107	Bh	(264)
					1	9	24	Ċ	.9415 51.996	42	Mo	95.94	74		183.85	106	S	(263)
						2	23	>	50.9415	41	Š	92.9064	73	La	180,948	105	Dp	(262)
						4	22	Ξ	47.88	40	Zr	91.22	72	Hſ	178.49	104	R	(261)
					,	3	21	Sc	44.9559	39	>	88.9059	71	r L	174.967	103	Ļ	(260)
7	4	Be	9.01218	12	Mg	24.305	20	ü	40.08	38	Sr	87.62	26	Ba	137.33	88	Ra	226.025
1 1 H 1.00794	3		6.941	1	8Z	22.9898 24.305	19	¥	39.0983	37	Rb	85.4678	55	ర	132.905	87	Fr	(223)

Lanthanides: 57	57	58	59	09	61	62	63	64	65	99	19	89	69	70
	La		Pr	PN	Pm	Sm	Eu	P.S	Sm Eu Gd Tb Dy	D	Ho Er	Er	Tm	Yb
	138.906		140.12 140.908 144.24	144.24		150.36	151.96	157.25	158.925	62.50	161.930	167.26	166.934	173.04
Actinides:	68	90	91	92	93	94	95	96	16	86	66	100	101	102
	Ac	Th	Pa	D	dN	Pu	Am		Bk	Ç	Es	Fm	Md	S
	227.028 232.038 231.036 238	232.038	231.036	238.029	8.029 237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

Actinid

Page 8 of 8